Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Int J Biol Macromol ; : 131625, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631569

RESUMO

Nano zero-valent iron (nZVI) is an advanced environmental functional material for the degradation of tetrabromobisphenol A (TBBPA). However, high surface energy, self-agglomeration and low electron selectivity limit degradation rate and complete debromination of bare nZVI. Herein, we presented biomass-derived cellulose nanocrystals (CNC) modified nZVI (CNC/nZVI) for enhanced TBBPA removal. The effect of raw material (straw, filter paper and cotton), process (time, type and concentration of acid hydrolysis) and synthesis methods (in-situ and ex-situ) on fabrication of CNC/nZVI were systematically evaluated based on TBBPA removal performance. The optimized CNC-S(in)/nZVI was prepared via in-situ liquid-phase reduction using straw as raw material of CNC and processing through 44 % H2SO4 for 165 min. Characterizations illustrated nZVI was anchored to the active sites at CNC interface through electrostatic interactions, hydrogen bonds and FeO coordinations. The batch experiments showed 0.5 g/L CNC-S(in)/nZVI achieved 96.5 % removal efficiency at pH = 7 for 10 mg/L initial TBBPA. The enhanced TBBPA dehalogenation by CNC-S/nZVI(in), involving in initial adsorption, reduction process and partial detachment of debrominated products, were possibly attributed to elevated pre-adsorption capacity and high-efficiency delivery of electrons synergistically. This study indicated that fine-tuned fabrication of CNC/nZVI could potentially be a promising alternative for remediation of TBBPA-contaminated aquatic environments.

2.
J Geriatr Cardiol ; 21(1): 34-43, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38440337

RESUMO

BACKGROUND: The recently introduced ultrasonic flow ratio (UFR), is a novel fast computational method to derive fractional flow reserve (FFR) from intravascular ultrasound (IVUS) images. In the present study, we evaluate the diagnostic performance of UFR in patients with intermediate left main (LM) stenosis. METHODS: This is a prospective, single center study enrolling consecutive patients with presence of intermediated LM lesions (diameter stenosis of 30%-80% by visual estimation) underwent IVUS and FFR measurement. An independent core laboratory assessed offline UFR and IVUS-derived minimal lumen area (MLA) in a blinded fashion. RESULTS: Both UFR and FFR were successfully achieved in 41 LM patients (mean age, 62.0 ± 9.9 years, 46.3% diabetes). An acceptable correlation between UFR and FFR was identified (r = 0.688, P < 0.0001), with an absolute numerical difference of 0.03 (standard difference: 0.01). The area under the curve (AUC) in diagnosis of physiologically significant coronary stenosis for UFR was 0.94 (95% CI: 0.87-1.01), which was significantly higher than angiographic identified stenosis > 50% (AUC = 0.66, P < 0.001) and numerically higher than IVUS-derived MLA (AUC = 0.82; P = 0.09). Patient level diagnostic accuracy, sensitivity and specificity for UFR to identify FFR ≤ 0.80 was 82.9% (95% CI: 70.2-95.7), 93.1% (95% CI: 82.2-100.0), 58.3% (95% CI: 26.3-90.4), respectively. CONCLUSION: In patients with intermediate LM diseases, UFR was proved to be associated with acceptable correlation and high accuracy with pressure wire-based FFR as standard reference. The present study supports the use of UFR for functional evaluation of intermediate LM stenosis.

3.
J Org Chem ; 89(6): 4056-4066, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449357

RESUMO

An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.


Assuntos
Aminoácidos , Glicina , Alcenos , Peptídeos , Catálise
4.
J Geriatr Cardiol ; 21(2): 232-241, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38544497

RESUMO

BACKGROUND: The prognostic value of coronary collateral circulation (CC) in patients undergoing chronic total occlusion (CTO) percutaneous coronary intervention (PCI) is underdetermined. The purpose of the study was to assess the prognostic value of current two CC grading systems and their association with long-term outcomes in patients with CTO underwent PCI. METHODS: We consecutively enrolled patients with single-vessel CTO underwent PCI between January 2010 and December 2013. All patients were categorized into well-developed or poor-developed collaterals group according to angiographic Werner's CC (grade 2 vs. grade 0-1) or Rentrop (grade 3 vs. grade 0-2) grading system. The primary endpoint was 5-year cardiac death. RESULTS: Of 2452 enrolled patients, the overall technical success rate was 74.1%. Well-developed collaterals were present in 686 patients (28.0%) defined by Werner's CC grade 2, and in 1145 patients (46.7%) by Rentrop grade 3. According to Werner's CC grading system, patients with well-developed collaterals had a lower rate of 5-year cardiac death compared with those with poor-developed collaterals (1.6% vs. 3.3%, P = 0.02), those with suboptimal recanalization was associated with higher rate of 5-year cardiac death compared with optimal recanalization (4.7% vs. 0.8%, P = 0.01) and failure patients (4.7% vs. 1.6%, P = 0.12). However, the similar effect was not shown in Rentrop grading system. CONCLUSIONS: In patients with the single-vessel CTO underwent PCI, well-developed collaterals by Werner's CC definition were associated with lower rate of 5-year cardiac death. Werner's CC grading system had a greater prognostic value than Rentrop grading system in patients with CTO underwent PCI.

5.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542855

RESUMO

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Carbamatos/farmacologia , Tiofanato , Antibacterianos
6.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542984

RESUMO

The fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized via a facile one-pot solvothermal process using coal (Jin 15 Anthracite and Shaerhu lignite) as raw materials and dimethyl formamide (DMF) as the solvent, employing a microwave pyrolysis method. This approach demonstrates remarkable efficacy in the development of nitrogen-doped carbon dots (N-CDs) with a high quantum yield (QY). The N-CDs prepared have strong photoluminescence properties. Moreover, the obtained N-CDs emit blue PL and are easily dispersed in polymethyl methacrylate (PMMA), preserving the inherent advantages of N-CDs and the PMMA matrix. The JN-CDs exhibit a high quantum yield (QY) of 49.5% and a production yield of 25.7%, respectively. In contrast, the SN-CDs demonstrate a quantum yield of 40% and a production yield of 35.1%. It is worth noting that the production yield and quantum yield of coal-based carbon dots are inversely related indices. The lower metamorphic degree of subbituminous coal favors an enhanced product yield, while the higher metamorphic degree of anthracite promotes an improved quantum yield in the product, which may be attributed to the presence of amorphous carbon within it. Consequently, we propose and discuss potential mechanisms underlying N-CD formation.

7.
Noncoding RNA Res ; 9(2): 407-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511063

RESUMO

This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.

8.
Environ Sci Technol ; 58(9): 4357-4367, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38326940

RESUMO

Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Ferro
9.
Adv Colloid Interface Sci ; 325: 103094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359673

RESUMO

Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Polímeros , Polietilenoglicóis , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Microambiente Tumoral
10.
J Biomed Mater Res A ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38327244

RESUMO

After implantation of the Mg alloy in the human body, the adsorption of plasma protein on surface will cause a series of cell reactions and affect the degradation of Mg alloys. Herein, in vitro biological reactions of the ZK60 and AZ31 Mg alloys are analyzed in plasma protein environment. Combined with mass spectrometry analysis of the type of adsorbed proteins, it is shown that proteins such as fibrinogen, vitronectin, fibronectin, and prothrombin are prone to get adsorbed on the surface of the alloys than other proteins, leading to the promotion of MG63 cell adhesion and proliferation. The effect of selected proteins (fibrinogen, fibronectin, and prothrombin) on degradation of ZK60 and AZ31 Mg alloys is investigated using immersion tests. The degradation of AZ31 Mg alloy is significantly restrained with the presence of proteins. This is due to the protein adsorption effect on the sample surface. The molecular dynamics simulation results indicate that both fibrinogen and fibronectin tend to adsorb onto the AZ31 rather than ZK60, forming a stable protein layer on the AZ31 Mg alloy retarding the degradation of the samples. As to ZK60 alloy, the addition of protein inhibits the degradation in the short term, however, the degradation increases after a long time of immersion. This phenomenon is particularly pronounced in fibronectin solution.

11.
ACS Omega ; 9(6): 6924-6931, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371847

RESUMO

Blockage is often generated in the air nozzle guide duct in a circulating fluidized-bed coal gasifier (CFBG), especially with Zhundong sub-bituminous coal (ZSBC) as the raw material. A typical example is found in one CFBG sample from Xinjiang Yihua Chemical Industry Co, Ltd. The serious blockage can be observed obviously. As so far, it is not clear for the characteristics and generation mechanism of the blockage. For analysis, the blockage can be classified into two parts, wall-layer blockage (WLB) and center-layer blockage (CLB). To inhibit its formation, it is of significance to analyze the composition, surface morphology, and formation mechanism of the two blockages. In our experiments, WLB and CLB were tested by XRF, XRD, FTIR, SEM-EDS, and SEM-mapping methods. Results showed that WLB presents high content of Fe, Cr, and Ni, and Fe mainly existed in the form of metal oxides. CLB is dominated by Si (43.04%), derived from silica and alkali and alkaline-earth metals silicates, and the migration of Fe, Cr, and Ni elements from the duct material was observed. Compared with WLB, from FTIR analysis, CLB contains more inorganic minerals, and the absorption peak of inorganic minerals is mainly attributed to asymmetric Si-O-Si. Many fine particles are attached to the surface of the WLB, while the surface of the CLB is smooth, and there is noticeable raised texture, which is presumed to be the result of particle melting and agglomerating as the bottom ash enters the duct in the gasification process. For the formation of the blockage, this paper speculates that it is mainly due to the difference in flow resistance near the air nozzle outlet, resulting in the formation of a flow dead zone at the bottom of the gasifier, which leads to large amounts of ash overcoming the outlet resistance and leaking into the air nozzle, and next, the ash corrodes in the tube, resulting in wall deposition and ultimately blocking the air guide duct. Two methods can be tried to avoid or inhibit the formation of blockage in the duct, including optimizing air nozzle with more wear-resistant and heat-resistant materials and adjusting the distance between air nozzles to avoid mutual interference from ash particles.

12.
Nat Commun ; 15(1): 238, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172144

RESUMO

The demand for lithium extraction from salt-lake brines is increasing to address the lithium supply shortage. Nanofiltration separation technology with high Mg2+/Li+ separation efficiency has shown great potential for lithium extraction. However, it usually requires diluting the brine with a large quantity of freshwater and only yields Li+-enriched solution. Inspired by the process of selective ion uptake and salt secretion in mangroves, we report here the direct extraction of lithium from salt-lake brines by utilizing the synergistic effect of ion separation membrane and solar-driven evaporator. The ion separation membrane-based solar evaporator is a multilayer structure consisting of an upper photothermal layer to evaporate water, a hydrophilic porous membrane in the middle to generate capillary pressure as the driving force for water transport, and an ultrathin ion separation membrane at the bottom to allow Li+ to pass through and block other multivalent ions. This process exhibits excellent lithium extraction capability. When treating artificial salt-lake brine with salt concentration as high as 348.4 g L-1, the Mg2+/Li+ ratio is reduced by 66 times (from 19.8 to 0.3). This research combines ion separation with solar-driven evaporation to directly obtain LiCl powder, providing an efficient and sustainable approach for lithium extraction.

13.
J Am Chem Soc ; 146(3): 2275-2285, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215226

RESUMO

The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.

14.
ACS Omega ; 9(3): 3363-3372, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284082

RESUMO

The structural characteristics of the organic matter and biomarker distributions in Shengli lignite (SL) were comprehensively studied by combining a variety of modern analytical techniques and solvent extraction/thermal dissolution. Characterization of SL with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid 13C nuclear magnetic resonance spectroscopy and thermogravimetry showed that organic matter in SL is rich in oxygen functional groups, such as C-O, >C=O, and -COOH, and hydrogen bonds. The hydrogen bonds mainly include -OH···π, self-associated -OH, -OH···ether O, tightly bound cyclic -OH, -OH···N, -COOH dimers, and -SH···N. The highest content of organic nitrogen and sulfur on SL surface are pyrrole nitrogen and aromatic sulfur, respectively. The proportions of aromatic and aliphatic carbons in SL are about 58% and 39%, respectively. The aromatic carbon is mainly composed of protonated aromatic and aromatic bridged carbons; methylene carbon has the highest content among the aliphatic carbons, with chains of average length of 1.43 carbon atoms. The average number of aromatic structural units in the carbon skeleton of SL is about 3, and each aromatic structural unit contains an average of 1-2 substituent groups. Thermogravimetric analysis clarified the distribution of the main types of covalent bonds in SL and their possible cracking temperatures during pyrolysis. The extracts and soluble portion of thermal dissolution from SL were analyzed by a gas chromatograph/mass spectrometer, and a series of biomarkers were identified, mainly concentrated in petroleum ether extract and cyclohexane thermal soluble portion. These included long-chain n-alkanes, isoprenoid alkanes, long-chain n-alkenes, terpenoids, n-alkan-2-ones, long-chain n-alkylbenzene, and long-chain n-alkyltoluene. The comprehensive characterization of the organic matter and the distribution of related biomarkers provided an important scientific basis for understanding the molecular structural characteristics and geochemical information on SL.

15.
J Thromb Thrombolysis ; 57(1): 29-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37351822

RESUMO

BACKGROUND: VT (Ventricular Thrombus) is a serious complication of dilated cardiomyopathy (DCM). Our goal is to develop a nomogram for personalized prediction of incident VT in DCM patients. METHODS: 1267 patients (52.87 ± 11.75 years old, 73.8% male) were analyzed retrospectively from January 01, 2015, to December 31, 2020. A nomogram model for VT risk assessment was established using minimum absolute contraction and selection operator (LASSO) and multivariate logistic regression analysis, and its effectiveness was validated by internal guidance. The model was evaluated by the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA). We compared the performance in predicting VT between nomogram and CHA2DS2, CHA2DS2- VASc or ATRIA by AUC, akaike information criterion (AIC), bayesian information criterion (BIC), net reclassification index (NRI), and integrated discrimination index (IDI). RESULTS: 89 patients (7.02%) experienced VT. Multivariate logistic regression analysis revealed that age, left ventricular ejection fraction (LVEF), uric acid (UA), N-terminal precursor B-type diuretic peptide (NT-proBNP), and D-dimer (DD) were important independent predictors of VT. The nomogram model correctly separates patients with and without VT, with an optimistic C score of 0.92 (95%CI: 0.90-0.94) and good calibration (Hosmer-Lemeshow χ2 = 11.51, P = 0.12). Our model showed improved prediction of VT compared to CHA2DS2, CHA2DS2-VASc or ATRIA (all P < 0.05). CONCLUSIONS: The novel nomogram demonstrated better than presenting scores and showed an improvement in predicting VT in DCM patients.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias , Trombose , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Teorema de Bayes , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Nomogramas , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda , Trombose/diagnóstico , Trombose/etiologia
16.
J Org Chem ; 89(1): 624-632, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38115588

RESUMO

A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.

17.
ACS Nano ; 18(1): 571-580, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126781

RESUMO

The proximity effect at a highly transparent interface of an s-wave superconductor (S) and a topological insulator (TI) provides a promising platform to create Majorana zero modes in artificially designed heterostructures. However, structural and chemical issues pertinent to such interfaces have been poorly explored so far. Here, we report the discovery of Pd diffusion-induced polarization at interfaces between superconductive Pd1+x(Bi0.4Te0.6)2 (xPBT, 0 ≤ x ≤ 1) and Pd-intercalated Bi2Te3 by using atomic-resolution scanning transmission electron microscopy. Our quantitative image analysis reveals that nanoscale lattice strain and QL polarity synergistically suppress and promote Pd diffusion at the normal and parallel interfaces, formed between Te-Pd-Bi triple layers (TLs) and Te-Bi-Te-Bi-Te quintuple layers (QLs), respectively. Further, our first-principles calculations unveil that the superconductivity of the xPBT phase and topological nature of the Pd-intercalated Bi2Te3 phase are robust against the broken inversion symmetry. These findings point out the necessity of considering the coexistence of electric polarization with superconductivity and topology in such S-TI systems.

18.
Phys Chem Chem Phys ; 25(48): 32845-32852, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047321

RESUMO

The uniaxial zero thermal expansion (ZTE) in distorted Prussian blue analogue (PBA) RbCuCo(CN)6 is reproduced by employing first-principles calculations, which agrees well with the experimental data. Also, the zero linear compressibility (ZLC) behavior in RbCuCo(CN)6 can be found. The special Jahn-Teller distortion introduced by Cu2+ in RbCuCo(CN)6 is noticed by investigating the change of the local structure with temperature and hydrostatic pressure. The lattice thermal conductivity (LTC) and phonon group velocity of RbCuCo(CN)6 are studied, where the LTC and phonon group velocity are significantly anisotropic. Especially, RbCuCo(CN)6 exhibits a quite low LTC, and its c-axis shows a characteristic of glasslike LTC at low temperatures. Our work facilitates a deep understanding of the coexistence mechanisms of uniaxial ZTE and ZLC properties in RbCuCo(CN)6.

19.
Ann Plast Surg ; 91(5): 540-546, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823621

RESUMO

BACKGROUND: Soft tissue expansion is a common technique for restoring large skin defects. Fixed-type expanders may be inappropriate for the following reasons: (1) the shapes and sizes of the defects vary in different patients; and (2) the bulged base of the fixed-type expander does not fit the curve of the human body, which may induce complications such as concave deformities or nerve palsy from continuous mechanical compression. The customized expander adjusts better to the shape and the topography of the expansion site compared with the fixed-type expander. It improves expansion efficiency and reduces complications caused by compression. METHODS: Between 2016 and 2022, customized soft tissue expansion was performed in 38 patients with skin lesions, including giant congenital melanocytic nevi and postburn scars. This series of patients included patients with a specific donor site shape that is unsuitable for fixed-type expanders. An expander was customized according to the shape of the donor site and then implanted in the subcutaneous pocket. After the expander reached a sufficient volume, the expander was removed, and the extra expanded skin flap was transferred to resurface the skin lesion. In the follow-up, the outcome and the complications were recorded. RESULTS: All the customized expanders fit not only the dimension but also the topography of the donor site. During expansion, 2 patients experienced leakage of the expander, and 3 patients suffered a skin rupture. In the remaining 33 patients, the expansion was successfully completed, and the expanded flaps restored the skin lesions as designed. The color and texture of the skin flaps remained satisfactory after long-term follow-up. CONCLUSIONS: Unlike fixed-type expanders, our customized expanders make it possible for "accurate" expansion, irrespective of the dimension and topography of the donor area. Customization of the expander helps increase efficiency and reduce complications caused by undue compression.


Assuntos
Procedimentos de Cirurgia Plástica , Dispositivos para Expansão de Tecidos , Humanos , Retalhos Cirúrgicos , Expansão de Tecido/métodos , Transplante de Pele
20.
Sci Rep ; 13(1): 18390, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884650

RESUMO

Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Transportador de Cobre 1 , MicroRNAs , RNA Longo não Codificante , Bases de Dados Factuais , Idioma , MicroRNAs/genética , RNA Longo não Codificante/genética , Cobre , Humanos , Neoplasias da Mama/genética , Transportador de Cobre 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...